

Using a Common Denominator

Goal: Add and subtract fractions with different denominators.

Adding and Subtracting Fractions

Words If the fractions have different denominators, multiply the fractions by

a fraction equivalent to to make a denominator.

Numbers $\frac{2}{3} + \frac{1}{2} = \frac{2 \cdot 2}{3 \cdot 2} + \frac{1 \cdot 3}{2 \cdot 3} = \frac{4}{6} + \frac{3}{6} = \frac{4+3}{6} = \frac{7}{6}$ $\frac{3}{5} - \frac{1}{2} = \frac{3 \cdot 2}{5 \cdot 2} - \frac{1 \cdot 6}{2 \cdot 6} = \frac{6}{10} - \frac{6}{10} = \frac{6 \cdot 6}{10} = \frac{6}{10}$

Algebra $\frac{a}{b} + \frac{c}{d} = \frac{a}{bd} + \frac{c}{bd} = \frac{a}{bd} + \frac{c}{d} = \frac{a}{b} + \frac{c$

$\frac{a}{b} - \frac{c}{d} = \boxed{ }$

EXAMPLE 1 Adding Fractions

a.
$$\frac{2}{5} + \frac{2}{15}$$

To find the LCD of the fractions, write the prime factorization of each denominator.

$$5 = 5$$

So, the LCD is -5 =

$$\frac{2}{5} \cdot \frac{3}{3} =$$

$$\frac{2}{15} \cdot \frac{1}{1} = \frac{2}{15}$$

$$+\frac{2}{15}=$$

b.
$$\frac{3}{4} + \frac{-1}{3}$$

To find the LCD of the fractions, write the prime factorization of each denominator.

So, the LCD is 3 = 6

$$\frac{3}{4} \cdot \frac{3}{3} = \frac{9}{12}$$

$$\frac{-1}{3}$$

$$\frac{9}{12} + \left(-\frac{4}{12}\right) = \frac{1}{12}$$

EXAMPLE 2 Subtracting Fractions

a.
$$\frac{5}{8} - \frac{11}{12}$$

To find the LCD of the fractions, write the prime factorization of each denominator.

$$12 = 2^2 \cdot 3$$

So, the LCD is
$$3 = 3$$
.

$$\frac{5}{8} \cdot \frac{3}{3} = \boxed{}$$

$$\frac{11}{12} \cdot \frac{2}{2} =$$

b.
$$5 - \frac{5}{6}$$

To find the LCD of the fractions, write the prime factorization of each denominator.

$$6 = 2 \cdot 3$$

$$\frac{5}{1} \cdot \boxed{}$$

$$\frac{5}{6} \cdot \frac{1}{1} =$$

Guided Practice Find the sum or difference. Then simplify if possible.

1. $\frac{2}{7} + \frac{1}{2}$	
3. $\frac{2}{5}$ + $\frac{-9}{10}$	4. <u>11</u> 5 18

EXAMPLE 3 Modeling with Mixed Numbers

Running you run $8\frac{5}{6}$ miles on Monday and $6\frac{3}{4}$ miles on Wednesday. Your goal is to run 25 miles. How many miles must you run to meet your goal?

Solution

To find the number of miles you must run, write a verbal model.

Think: What mixed number with a denominator of 12 equals 25?

$$\begin{bmatrix} \text{Miles to} \\ \text{run, } m \end{bmatrix} = \begin{bmatrix} \text{Goal} \\ - \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right)$$

$$m = \left[-\left(8\frac{5}{6} + \right) \right]$$

Write an algebraic model.

$$= \frac{12}{12} - \left(8 \frac{12}{12} + \frac{1}{12}\right)$$

Rewrite fractions using LCD of 12.

$$=$$
 $\frac{12}{12}$ $-$

Add inside parentheses.

$$=$$
 $\frac{12}{12}$ $-$

Rename mixed number.

$$=(1) + (12/12 - 12/12)$$

Commutative property.

Subtract whole numbers and fractions.

Answer: You must run

miles to meet your goal.

5. $\frac{5}{9} + \frac{1}{3}$

Guided Practice Find the sum or difference. Then simplify if possible.

6. $\frac{7}{10} - \frac{4}{5}$

7. 5.1	2 - 3	3	
	2 7	4	

8.
$$2\frac{2}{3} + 6\frac{3}{8}$$